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Abstract— Sensor coverage is the critical multi-robot prob-
lem of maximizing the detection of events in an environment
through the deployment of multiple robots. Large multi-robot
systems are often composed of simple robots that are typically
not equipped with a complete set of sensors, so teams with
comprehensive sensing abilities are required to properly cover
an area. Robots also exhibit multiple forms of relationships
(e.g., communication connections or spatial distribution) that
need to be considered when assigning robot teams for sensor
coverage. To address this problem, in this paper we introduce
a novel formulation of sensor coverage by multi-robot systems
with heterogeneous relationships as a graph representation learn-
ing problem. We propose a principled approach based on the
mathematical framework of regularized optimization to learn a
unified representation of the multi-robot system from the graphs
describing the heterogeneous relationships and to identify the
learned representation’s underlying structure in order to assign
the robots to teams. To evaluate the proposed approach, we
conduct extensive experiments on simulated multi-robot systems
and a physical multi-robot system as a case study, demonstrating
that our approach is able to effectively assign teams for heteroge-
neous multi-robot sensor coverage.

I. INTRODUCTION

Multi-robot sensor coverage is a critical problem for multi-
robot systems, with the objective of deploying a multi-robot
team in an area in order to maximize the overall sensing per-
formance in terms of the detection of phenomena or events in
the environment [1]–[3]. Multi-robot sensor coverage enables
collaborative observations of large and complex environments,
which allows a multi-robot system to effectively obtain a more
complete view of the environment than each individual robot
could. Multi-robot sensor coverage is the core task in a wide
variety of real-world applications, including surveillance [4],
search and rescue [5], and environment exploration [6].

Multi-robot sensor coverage is a challenging research
problem. In real-world environments, e.g., during disaster
response, various phenomena or events can occur. However,
as individual robots in a large multi-robot system are typically
limited in their sensing, mobility, and computation capabilities
[7], individual robots are often not be able to cover an
entire area or may not have the sensing capabilities to sense
all events in the environment. Therefore, these robots must
be organized into teams in a such way that the maximum
number of phenomena are detected through distributing their
available sensing capabilities [8]. Furthermore, robots in a
multi-robot system exhibit multiple additional heterogeneous
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relationships, such as their communication connections and
spatial distribution [9], which must be taken into account when
assigning teams for sensor coverage in a multi-robot system.

Due to its importance, multi-robot sensor coverage has
been attracting significant attention over the past few years.
Many previous approaches have focused on sensor coverage by
homogeneous multi-robot systems [1], [10]. These techniques
assumed that the robots possess the same set of sensors and can-
not address heterogeneity in sensing capabilities. To address
heterogeneous sensing abilities, several methods have been
implemented to assign coverage regions based on Gaussian
distributions [2], control laws [8], and information maximiza-
tion [11]. The methods consider only the spatial distribution
of robots or only the sensing capabilities, and cannot integrate
multiple heterogeneous relationships that occur in a multi-
robot system when performing sensor coverage.

In this paper, we propose an approach to assigning teams
for sensor coverage by a multi-robot system with multiple het-
erogeneous relationships through novel graph representation
learning. We describe each of the heterogeneous relationships
among the robots (such as their spatial distribution, communi-
cation connections, and co-occurrence of sensing capabilities)
as a graph that is encoded using an adjacency matrix. Then,
we formulate team assignment as a graph representation
learning problem, and develop a method to learn a unified
representation that integrates multiple graphs describing the
heterogeneous relationships. The proposed approach is based
on the principled mathematical framework of regularized
optimization with structured norms as regularization terms
in order to identify block structures within the representation.
The learned representation is used to perform sensor coverage
by assigning the robots to teams according to a given number
of regions based on spectral cuts.

This paper introduces two contributions:
• We introduce a new problem formulation that formulates

sensor coverage by a multi-robot system having multiple
heterogeneous relationships as a problem of assigning
teams through graph representation learning. We also
propose a novel principled approach based upon regular-
ized optimization which learns a unified representation
of the multi-robot system from the graphs describing the
heterogeneous robot relationships, and applies structured
norms and constraints to identify the underlying structure
within the representation.

• We develop an iterative algorithm to solve the formulated
regularized optimization problem, which is challenging to
solve because of the non-smooth regularization terms and
constraints. We prove that this algorithm is theoretically
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guaranteed to converge to the optimal solution.

II. RELATED WORK

A. Homogeneous Multi-Robot Sensor Coverage

Most research has focused on multi-robot systems with
homogeneous sensing capabilities [1]. As approaches designed
for homogeneous multi-robot systems assume only the type
of sensing modality, most methods address sensor coverage
from the perspective of fully covering an environment spatially,
and devising multi-robot strategies to do this efficiently [12].
Partitioning a space based on the estimated information gain
from different regions was proposed in [13], while [14] intro-
duced a distributed version of sequential greedy assignment to
plan coverage paths. Representing an environment as a discrete
graph and identifying equal-mass partitions to assign to each
individual robot was used in [15], [16]. Deployment of multiple
robots to cover an unknown environment is approached as a
problem of distributing robots in the environment [17]. This
can be done by using gradient descent over estimated density
functions [18] or assigning Voronoi partitions [19], [20].

All of these described methods apply to only homogeneous
teams, where each robot is assumed to have the same sensing
capabilities. Thus, they are not able to address sensor coverage
by heterogeneous robots with various capabilities.

B. Heterogeneous Multi-Robot Sensor Coverage

For small multi-robot teams, approaches to sensor coverage
based on scheduling [21], [22] or naive following (e.g., an
aerial robot follows a ground robot to provide a different
perspective) [23] have been effective. For larger multi-robot
systems, without strictly defined roles or capabilities, more
general approaches are necessary. Some again use Voronoi
partitions, assigning each robot a specific region to cover
[24], [25]. Other methods have been focused on identifying
environment correspondences based on robot locations [26],
[27] or fitting robot positions to a distribution function based
on ‘sensing quality’ [11]. Identifying this distribution from
the sensors in the environment and dynamically responding
to it has also been proposed, through identifying the most
informative areas [3] or by fitting a density function to an
exact sensed value such as temperature [2]. This has also been
addressed using weighted density functions that are adjusted as
the robots sense more of the environment and estimate the true
density [28] or by utilizing gradient descent based methods
to converge to locally optimal arrangements [29]. The idea of
evaluating multi-robot sensor coverage based on the detection
of multiple event types was introduced to rate a cost function
to distribute robots [8], [30].

While these approaches have been implemented to assign
regions or tasks to individual robots in a multi-robot system
(e.g., through game theory [31], [32] or scheduling algorithms
[33], [34]), little existing research has focused on the problem
of identifying teams of robots which would work together to
perform sensor coverage. Naive methods have been introduced
that rely solely on line-of-sight [35] or identifying equal sized
working regions [36]. Other existing methods are biologically
inspired by real-world insect behavior, such as ant foraging

[37], ant colony labor division [38], or swarms of wasps [39].
However, these methods are limited by either being overly
parametric (in order to imitate a complex existing biological
model) or simplistic (e.g., by assuming the agents would not
be able to communicate).

Although these described approaches are able to deal with
multiple sensing capabilities, they are based upon single forms
of relationships (typically spatial relations among robots in the
environment) and cannot integrate multiple heterogeneous re-
lationships, while real-world multi-robot systems are typically
defined through multiple forms of heterogeneous relationships.

III. OUR PROPOSED FORMULATION AND APPROACH

A. Problem Formulation
Given a multi-robot system at a distinct time point consisting

of N robots with M heterogeneous relationships, we can
describe each relationship using a directed graph Gm =
(V, Em), where V = {v1, . . . , vN} denotes the set of vertices
and Em denotes the set of directed edges between these
vertices for the m-th relationship. When describing the multi-
robot system, each vertex vi represents an individual robot.
Each edge eij = (vi, vj) ∈ Em represents the connection
between the robots corresponding to vertices vi and vj in
the m-th relationship. The magnitude and direction of the
edge eij depends on the relationship that is being modeled,
e.g. a spatial relationship may be represented by the distance
between the two robots. Each graph Gm is then encoded using
a corresponding adjacency matrix Am ∈ RN×N , with each
element aij describing the value of the edge eij . For example,
if a graph Gm encodes the co-occurrence of sensing capabilities
in a multi-robot system, the edge eij and the entry aij in the
adjacency matrix could have a real value of the number of
sensors in common between the i-th robot and the j-th robot.
Assuming these robots have M heterogeneous relationships,
the multi-robot system can be represented by the M -order
graph G = (V, E1, . . . , EM ).

We formulate team assignment for heterogeneous multi-
robot systems as a graph representation learning problem, with
the objective of learning a unified representation of the multi-
robot system from the M -order graph G, which can be used
to assign robots into teams. This formulation can be formally
defined as an optimization problem. Given G, the goal is to
obtain a matrix Z = {zij} ∈ RN×N that optimally aggregates
the individual graphs in G, where each element zij describes
the probability that the i-th robot and the j-th robot should be
assigned to the same team and coverage region. This matrix Z
represents an adjacency matrix that approximates the overall
structure of the multi-robot system. Mathematically, we learn
Z via a loss function, minZ L (A; Z), where the loss is based
on how well Z approximates each individual graph in G:

min
Z

M∑
m=1

αm‖Z−Am‖2F (1)

where ‖ · ‖F denotes the Frobenius norm, and αm, for m =
1, . . . ,M are hyperparameters where

∑M
m=1 αm = 1, which

are used to control the influence of each graph and can be tuned
via grid search or be defined by experts.
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B. Identifying Structures of Multi-Robot Systems

Based on this problem formulation, we identify underlying
block structures within the unified representation matrix Z
that correspond to teams for sensor coverage. We enforce Z
to be bistochastic (i.e., a non-negative real matrix whose rows
and columns all sum to 1). We enforce this for three reasons
and introduce three corresponding constraints to the structure
of Z. First, as each element zij of Z describes a probability
relationship between robot i and robot j (i.e., the probability
that the robots should be teamed together), no element of Z
can be less than 0, since a probability must be positive. For this,
we add the constraint that Z ≥ 0. Second, these probabilistic
relationships are reflexive, as the probability that the i-th robot
should be teamed with the j-th robot should be the same as
the probability that the j-th robot should be teamed with the
i-th robot. Because of this, zij should equal zji, so we add
the constraint that Z = ZT . Third, because each element zij
describes a probabilistic relationship between the i-th robot and
the j-th robot, each row zi and each column zj should sum to
1, as the total connection probability for each individual robot
should also sum to 1. Because of this, we add the constraint
that Z1 = 1, where 1 denotes a vector of 1s. With these
constraints, our formulation becomes:

min
Z

M∑
m=1

αm‖Z−Am‖2F (2)

s.t. Z1 = 1,Z = Z>,Z ≥ 0

We now identify teams within the multi-robot system by
inducing a learned block structure within Z through designing
new structured sparsity-based regularization terms, which can
be integrated into Eq. (2) in order to regularize Z under the
mathematical framework of regularized optimization.

The first regularization term we introduce utilizes the
squared Frobenius norm on the Z matrix:

‖Z‖2F =

N∑
i=1

N∑
j=1

z2ij (3)

This norm penalizes high values in Z, restricting connection
probabilities to small numbers of vertices. Through enforcing
our bistochastic constraint that all rows and columns must sum
to 1, yet penalizing high values with this norm, we increase the
probabilities among strongly connected robots, while causing
probabilities between weakly connected robots to approach 0.

The second regularization term we introduce acts on the
spectrum of the unified representation matrix Z, in the form
of the nuclear norm on the Laplacian of the Z matrix. Because
of the bistochastic constraints introduced in Eq. (2), we know
that each row and column of Z sum to 1, and thus the degree
matrix of Z, representing the total in-degree and out-degree
of each vertex, is equal to the identity matrix I. Thus we can
define the Laplacian of Z as L = I− Z. The nuclear norm of
a matrix is equivalent to the `1-norm of that matrix’s singular
values, or the square roots of the matrix’s eigenvalues. Thus it
encourages sparsity among these eigenvalues, penalizing the
terms which are non-zero. As the multiplicity of 0 eigenvalues

Algorithm 1: Our Algorithm to Solve Eq. (5).

1: Set 1 < � < 2 and k = 0 . Initialize the penalty terms � 0 , � 0
1 ,

� 0
2 , � 0

3 , and � 0
4 .

2: repeat
3: Compute Z k +1 by Eq. (8).
4: Compute Ẑ k +1 by Eq. (9).
5: Compute L k +1 by Eq. (12).
6: Update � 1 by � k +1

1 = � k
1 + � k �

Z k +1 1 � 1
�
.

7: Update � 2 by � k +1
2 = � k

2 + � k
�

Z k +1 > � Ẑ k +1
�

.

8: Update � 3 by � k +1
3 = � k

3 + � k �
L k +1 � I + Z k +1 �

.
9: Update � 4 by � k +1

4 = � k
4 + � k

�
Ẑ k +1 � Z k +1

�
.

10: Update � by � k +1 = �� k .
11: k = k + 1 .
12: until convergence;

of a Laplacian matrix corresponds to a graph’s connectivity
(i.e., the Laplacian of a fully connected graph has a single 0
eigenvalue), enforcing sparsity by way of the nuclear norm
encourages the formation of a graph with more connected
components:

‖L‖∗ =

N∑
n=1

σn (L) (4)

With the Frobenius norm concentrating values among small
groups of vertices and the nuclear norm of the Laplacian
rewarding graphs with more connected components, we cause
blocks to form in Z, corresponding to the underlying structure
of the multi-robot system. Using both norms as regularization
terms in the objective function allows this underlying structure
to emerge by focusing the loss function on accurately represent-
ing the individual graphs but rewarding the formation of groups
within the unified representation. When G has an underlying
structure that contains k groupings, with rearrangement of rows
and columns Z will appear as a block matrix with k blocks.

With the two regularization terms, our final formulation is
defined as a regularized constrained optimization problem:

min
Z

M∑
m=1

αm‖Z−Am‖2F + λ1‖Z‖2F + λ2‖L‖∗ (5)

s.t. L = I− Z,Z1 = 1,Z = Z>,Z ≥ 0

As the nuclear norm is not convex and L and Z are dependent,
we design a new iterative algorithm, as presented by Algorithm
1, to solve the formulated optimization problem and obtain the
optimal Z. The algorithm will be detailed in Section IV.

C. Assigning Multi-Robot Teams for Sensor Coverage

We address the problem of multi-robot sensor coverage by
assigning robots to coverage regions based on the learned
relationships represented in Z. As Z is learned from the hetero-
geneous relationships that describe the multi-robot system, the
blocks induced by the introduced structured sparsity-inducing
regularization terms correspond to teams of robots that are
located near each other while together possessing a variety of
sensing capabilities.
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We continue to treat Z as an adjacency matrix corresponding
to the learned unified representation of the multi-robot system.
The algebraic connectivity of a graph is defined as the second
smallest eigenvalue of the Laplacian, also referred to as the
Fiedler value. The corresponding eigenvector, known as the
Fiedler vector, can be utilized to partition a graph based upon
the signs of its values [40]. We begin the process of applying
cuts based on the Fiedler vector to cover a set of regions by
defining r, the mission-dependent number of regions to be
covered. We then iteratively apply Fiedler cuts to Z until we
have r partitions. We do this by first partitioning based upon
the entire Z matrix, and then subsequently partitioning based
on minors of Z, by re-partitioning the largest existing grouping.
For example, if Z is ∈ R5×5 and initially partitions into {1, 2}
and {3, 4, 5}, the next partition is done on the minor of Z based
on the overlap of the {3, 4, 5} columns and the {3, 4, 5} rows.
These partitions correspond to the assignment of multi-robot
teams, e.g. in this case robots 1 and 2 would be teamed together
if no further cuts were made.

IV. OPTIMIZATION ALGORITHM

The constrained optimization problem in our final formu-
lation in Eq. (5) is hard to solve, mainly because the nuclear
norm is not convex and because of the dependency between
L and Z. To solve it, we introduce a solution based on the
Augmented Lagrange Multiplier (ALM) method, which solves
problems of the form

min f (X) s.t. h (X) = 0

by rewriting constraints as penalty terms. We introduce Ẑ = Z
and solve for Z, Ẑ, and L iteratively to converge to a final
solution. We also introduce µ, φ1,Φ2,Φ3, and Φ4 and are
able to rewrite our equality constraints as penalty terms:

min
Z

M∑
m=1

αm‖Z−Am‖2F + λ1‖Z‖2F + λ2‖L‖∗ (6)

+
µ

2
‖Z1− 1 +

1

µ
φ1‖22 +

µ

2
‖Z> − Ẑ +

1

µ
Φ2‖2F

+
µ

2
‖L− I + Z +

1

µ
Φ3‖2F +

µ

2
‖Ẑ− Z +

1

µ
Φ4‖2F

s.t. Z ≥ 0

Our iterative algorithm is defined in Algorithm 1 and
described below.

1) Step 1: We first solve for Z, by fixing Ẑ and L and taking
the derivative of Eq. (6) w.r.t. Z and setting it equal to 0. The
update to Z at each iteration is

Z =

(
M∑
m=1

2αmAm + µ
(
11> + Ẑ> + L− I− Ẑ

)
− φ11> −Φ2 + Φ3 + Φ4

)
(

M∑
m=1

2αmI + 2λ1I + 3µI + µ11>

)−1
(7)

To incorporate the Z ≥ 0 constraint, the final update to Z is

Z = max{Z, 0} (8)

2) Step 2: Next, we solve for Ẑ, by again fixing the other
two variables and taking the derivative of Eq. (6) w.r.t. Ẑ and
setting it equal to 0. With rearrangement, the final update to Ẑ
is

Ẑ = (2µI)
−1 (

µZ> + µZ + Φ2 + Φ4

)
(9)

3) Step 3: Next, we solve for L by minimizing the partial
objective function

min
L

λ2‖L‖∗ +
µ

2
‖L− I + Z +

1

µ
Φ3‖2F (10)

We solve this by computing the singular value decomposi-
tion (SVD) of −I + Z + Φ3

µ :

SVD
(
−I + Z +

Φ3

µ

)
= UΣV> (11)

and update L at each iteration by

L = Udiag

((
σi −

λ2
µ

)
+

)
V> (12)

where σi is the i-th diagonal element of Σ and diag (x) is a
diagonal matrix with the elements of x on the diagonal.

4) Step 4: Finally, we update the µ, φ1, Φ2, Φ3, Φ4 and k
parameters by the equations in Lines 6 through 10.

We obtain the optimal solution by repeating the update to
Z in Line 3, Ẑ in Line 4, L in Line 5, and the updates to the
multiplier variables in Lines 6–10 until convergence.

Convergence and complexity:The general ALM method
described and on which our solution is based is proven to
converge to an optimal solution [41] as long as 0 < µk < µk+1

for iteration k. With this assumption, the current solution Xk

will approach the optimal solution Xk∗. Since we initialize µ0

to be positive, initialize ρ such that 1 < ρ < 2, and update
µ by µk+1 = ρµk (Line 10 in Algorithm 1), this assumption
will hold at every iteration. In terms of complexity, it is trivial
to update φ1, Φ2, Φ3, and Φ4 in Lines 6-9, as well as µ and
k in Lines 10 and 11. The time complexity of our solution
is dominated by the update of Z in Line 3, Ẑ in Line 4, and
L in Line 5. Lines 3 and 4 compute a matrix inverse and
multiplication, each of complexity O(N3). Line 5 calculates
the SVD of a square matrix, also with a complexity ofO

(
N3
)
.

As a result, the overall complexity of our solution is O
(
N3
)
.

V. EXPERIMENTAL RESULTS

We evaluated on both simulated and physical multi-robot
systems, each described with three different graphs represent-
ing their heterogeneous relationships.

1) Spatial relationship: The first graph, GS , describes the
spatial structure of the system. Each edge eij describes
the inverse of the distance between the i-th and the j-th
robot, causing nearby robots to have higher edge weights
than further apart robots.

2) Communication: The second graph, GC , describes the
communication capabilities of the system. Robots are
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(a) 20 Robots, 3 Regions (b) 40 Robots, 3 Regions (c) 20 Robots, 3 Regions (d) 20 Robots, 4 Regions
Fig. 1. Figures 1(a) and 1(b) show coverage regions for varying number of robots. Light dotted magenta lines show the spacing of individual robots, while bold
magenta lines depict the coverage regions of the heterogeneous teams. Figures 1(c) and 1(d) show our approach’s performance with obstacles in the environment
(marked with gray lines). Voronoi regions are not marked here to reduce visual noise. Markers show individual robots, with the marker color denoting the team
assignment and the marker shape indicating that robot’s capability (e.g., a robot marked by an ‘o’ has different sensing capability than a robot marked by an ‘x’).

physically limited in their communication capabilities,
just as they are limited in their sensing capabilities.
For this graph, eij = 1 if the i-th robot is able to
communicate to the j-th robot, and 0 if not.

3) Heterogeneous sensing capability: The third graph, GSC ,
describes the relationships between robots based on
their sensing capabilities. We define a set of sensing
capabilities C, with Ci denoting the capabilities of the
i-th robot. GSC represents the similarity of two robots
based on their relative sensing capabilities. Here, eij =
|Ci ∩ Cj |, or the size of the intersection between the i-th
robot’s capabilities and the j-th robot’s capabilities.

We adopt two metrics commonly used in multi-robot sensor
coverage literature for evaluation, as well as a new metric to
quantitatively evaluate the composition of our identified teams.

1) Voronoi diagrams are adopted as a metric to evaluate the
coverage regions assigned to each heterogeneous team.
Voronoi regions divide an area into polygons based on
the distance to different points, and are commonly used
to qualitatively assess robot coverage methods [2], [8].

2) Event detection is used to evaluate sensing quality. For
each testing iteration we simulate 100 events of multiple
types, each of which is detectable by a single sensing
capability, following [8], [11]. If an event occurs in a
region where a robot team member has the sensing ability
to sense that type of event, then the event is considered
detected. If no such robot exists, then the event is not
detected. An event detection rate of 100% is optimal,
meaning all events are detected.

3) Robot duplication is introduced to evaluate the compo-
sition of the identified teams. If a team contains two
robots that share a sensor capability, then one robot is
a duplicate. The sensor duplication score is d

n , where
d is the number of duplicate robots and n is the total
number of robots. Lower duplication rates are better, as
this corresponds to robots being more evenly distributed.

We compare our approach to a baseline version as well
as a greedy algorithm. The baseline version of our approach
sets λ1 = λ2 = 0, so that our learned representation matrix
Z is still constrained to be bistochastic but does not utilize
the two regularization terms that induce a block structure. The
greedy algorithm disregards sensor capability relationships and
assigns robots to a region purely based on spatial relationships,

i.e. robots near each other are assigned to the same team.

A. Results on Simulated Multi-Robot Systems

We simulated systems of N = {10, 20, 30, 40, 50} robots,
and randomly assign a varying number of sensing capabilities
for |C| = {2, 3, 4, 5}. The graphs describing each system were
defined based on the generated positions and capabilities.

Figures 1(a) and 1(b) show qualitative results for two
instances of these simulations in the form of Voronoi diagrams
for 20 and 40 robots assigned into 3 teams. While we show the
boundaries between individual robots, our approach assigns
teams that cover larger regions together, indicated by the
bold magenta Voronoi lines. Figures 1(c) and 1(d) show team
assignment results in the presence of obstacles, with walls
indicated by the gray lines. These obstacles alter the spatial
and communication relationships among robots, i.e., robots
separated by a wall cannot communicate. It can be seen that
our approach is able to assign teams which are not separated
by walls which would interfere with cooperative operation.

Figure 2 shows the results for the event detection metric for a
subset of the simulations, specifically N = {20, 40} and |C| =
{3, 5} and covering between 2 and 10 regions. We see that in
most cases, the baseline version of our approach outperforms
the greedy algorithm based only on spatial relationships.
However, our approach consistently outperforms both, showing
that the block structure induced in the unified representation
matrix corresponds well to teams with high event detection
rates. Although not displayed due to space limitations, these
results are consistent with those for other values of N and |C|.

Figure 2 also shows results from the robot duplication
metric. We observe that in all tested cases in the experiments,
our approach outperforms the greedy approach based purely
upon distance between robots as well as a baseline version of
our approach. The teams identified by our approach contain
consistently fewer robots with duplicate sensing capabilities,
demonstrating that our approach is effective at distributing
capabilities among teams.

B. Results on Physical Multi-Robot Systems

Our second experiment implements our approach on physi-
cal robots using our multi-robot platform, consisting of N = 9
robots. Each robot, seen in the top corner of Figure 3(a), is
equipped with an RGB camera, depth camera, and microphone
for |C| = 3 sensing capabilities, as well as an LED ring for
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2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

# of Coverage Regions

Our Approach
Baseline (λ1, λ2 = 0)
Greedy

(a) 20 Robots, 3 Capabilities (b) 20 Robots, 5 Capabilities (c) 40 Robots, 3 Capabilities (d) 40 Robots, 5 Capabilities
Fig. 2. Event detection and robot duplication as the number of coverage regions varies, for simulated multi-robot systems of N = f20; 40g and jCj = f3; 5g.
Dashed lines indicate event detection, where higher rates are the better result, while solid lines indicate robot duplication, where lower rates are better.

(a) 2 Regions (b) 3 Regions (c) 4 Regions (d) Quantitative
Fig. 3. Results from our evaluation on physical robots. Figures 3(a)–3(c) show robots assigned to teams to cover 2, 3, and 4 regions. The magenta lines indicate
the separation between Voronoi regions that each team of robots is assigned to cover, while the LED rings on the robots indicate teams. Figure 3(d) shows the
event detection (dashed lines) and robot duplication (solid line) rates for the physical robot system.

status indication. We randomly disabled sensing capabilities on
the robots, so that each individual robot was limited to a single
capability. Robots moved randomly, with team assignments
and simulated events occurring at discrete time steps. Figures
3(a)–3(c) show sample team assignments for 2 to 4 regions.

Figure 3(d) shows the results of this evaluation in terms
of event detection and robot duplication. We see that our full
approach outperforms the others by a greater margin that on
the larger simulated systems, suggesting that the heteroge-
neous relationships our approach learns from are especially
influential on smaller scales. In terms of robot duplication,
our approach again outperforms the baseline approach and
the greedy approach. We note that the baseline approach very
closely tracks the performance of our full approach when the
number of regions is four or greater, suggesting that the block
structure induced by our full approach has a limited influence
as the blocks grow smaller (i.e., the number of robots on each
team decreases). We also see that all three approaches converge
at duplication of 0% when the number of teams equals the
number of robots; when only a single robot is present in each
region, there can be no duplicates.

C. Hyperparameter Analysis

We analyze the influence of the hyperparameters that control
the importance of each input graph, including α1 (controlling
the importance of the spatial graph), α2 (the communication
graph), and α3 (the sensing capability graph). Figure 4 shows
the event detection and robot duplication rates on a simulated
multi-robot system resulting from various combinations of the
hyperparameters, in the triangular topological space [42] with
each side of the triangle corresponding to an αi ∈ [0, 1] and∑3
i=1 αi = 1 with 2 independent values out of 3. For example,

the black cross in Figure 4(a), marking the best event detection
rate, represents α1 = 0.2, α2 = 0.1, and α3 = 0.7.

In Figure 4(a), the event detection is at its highest for high

values of α3, demonstrating the importance of the sensing
capabilities graph. We observe that balancing α1 and α2 in the
bottom right corner can maintain middling performance, but
relying solely on either of them causes event detection rates
to fall to their lowest values below 55%. Figure 4(b) shows
similar but much more consistent effects when evaluating
the rate of robot duplication, with high values of α3 (>
0.6) corresponding to low rates of duplication (< 20%).
Furthermore, we see that high values of α2 cause higher rates
of duplication, suggesting that grouping nearby robots is a poor
way to ensure heterogeneous teams.

(a) Event Detection (b) Robot Duplication
Fig. 4. Evaluation of the effect of hyperparameters on the event detection
and robot duplication rates. For event detection, a high rate (in red) is good,
whereas for robot duplication, a low rate (in blue) is better.

VI. CONCLUSION

As real-world robots in a multi-robot system are typically
limited in their individual sensing capabilities, coverage of an
area by a heterogeneous multi-robot system requires the effec-
tive assignment of teams that contain a variety of capabilities.
We propose an approach to learn a unified representation of
the heterogeneous relationships in the system, utilizing natural
divisions to assign teams. We show that our approach identifies
teams with high rates of event detection and low duplication
of robot capabilities.
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